Как да решават логаритмични уравнения

На пръв поглед логаритмичните уравнения са много трудни за решаване, но изобщо не е така, ако разбираме, че логаритмичните уравнения са друг начин за писане на индикативни уравнения. За решаване на логаритмичното уравнение, представете си под формата на индикативно уравнение.

Стъпка

Метод 1 от 4:
Първо се научете да представлявате логаритмично изразяване в индикативна форма.
  1. Изображение, озаглавено Решаване на логаритми Стъпка 1
един. Определение на логаритъма. Логаритъм се определя като индикатор за степента, в която трябва да се издаде основата, за да получи номера. Представените по-долу логаритмични и индикативни уравнения са еквивалентни.
  • Y = logБ (х)
  • При условие че: B = x
  • Б - основата на логаритъма и
  • B> 0
  • Б един
  • Не - Логаритъм на аргумента и W - стойността на логаритъма.
  • Изображение, озаглавено Решаване на логаритми Стъпка 2
    2. Погледнете това уравнение и определете основата (b), аргумент (x) и стойността (y) логаритъма.
  • Пример: 5 = log4(1024)
  • B = 4
  • Y = 5
  • x = 1024
  • Изображение, озаглавено решаване на логаритми стъпка 3
    3. Запишете аргумента за логаритъма (X) от едната страна на уравнението.
  • Пример: 1024 =?
  • Изображение, озаглавено Решаване на логаритми Стъпка 4
    4. От другата страна на уравнението, запишете основата (b), построена в степен, равна на стойността на логаритъма (Y).
  • Пример: 4 * 4 * 4 * 4 * 4 = ?
  • Това уравнение може също да бъде представено като: 4
  • Изображение, озаглавено решаване на логаритми стъпка 5
    пет. Сега запишете логаритмичния израз под формата на индикативен израз. Проверете дали отговорът е вярно, като се уверите, че двете страни на уравнението са равни.
  • Пример: 4 = 1024
  • Метод 2 от 4:
    Изчисление "x"
    1. Изображение, озаглавено Решаване на логаритми Стъпка 6
    един. Отделете логаритъма, преместени в едната страна на уравнението.
    • Пример: Дневник3(Х + 5) + 6 = 10
    • Дневник3(Х + 5) = 10 - 6
    • Дневник3(Х + 5) = 4
  • Изображение, озаглавено решаване на логаритми стъпка 7
    2. Пренапишете уравнението в индикативна форма (за тази употреба на метода, посочен в предишния раздел).
  • Пример: Дневник3(Х + 5) = 4
  • Според дефиницията на логаритъма (Y = logБ (х)): y = 4- b = 3- x = x + 5
  • Пренапишете това логаритмично уравнение под формата на индикативен (B = x):
  • 3 = x + 5
  • Изображение, озаглавено Решаване на логаритми Стъпка 8
    3. Намерете "x". За да направите това, решаване на индикаторното уравнение.
  • Пример: 3 = x + 5
  • 3 * 3 * 3 * 3 = x + 5
  • 81 = X + 5
  • 81 - 5 = x
  • 76 = X
  • Изображение, озаглавено решаване на логаритми Стъпка 9
    4. Запишете крайния отговор (проверете го преди него).
  • Пример: x = 76
  • Метод 3 от 4:
    Изчисляване на "X" чрез формулата за логаритъма
    1. Изображение, озаглавено Решаване на логаритми Стъпка 10
    един. Формула за логаритъм работи: Логаритъмът на произведенията на два аргументи е равен на сумата на логаритмите на тези аргументи:
    • ДневникБ(m * n) = logБ(m) + logБ(Н)
    • където:
    • M> 0
    • N> 0
  • Изображение, озаглавено решаване на логаритми стъпка 11
    2. Отделете логаритъма, преместени в едната страна на уравнението.
  • Пример: Дневник4(x + 6) = 2 - log4(х)
  • Дневник4(x + 6) + log4(x) = 2 - log4(x) + log4(х)
  • Дневник4(x + 6) + log4(x) = 2
  • Изображение, озаглавено решаване на логаритми стъпка 12
    3. Прилагат формулата за логаритъма на работата, ако има сума от два логаритми в уравнението.
  • Пример: Дневник4(x + 6) + log4(x) = 2
  • Дневник4[(x + 6) * x] = 2
  • Дневник4(x + 6x) = 2
  • Изображение, озаглавено решаване на логаритми стъпка 13
    4. Пренапишете уравнението в индикативна форма (за тази употреба на метода, посочен в първия раздел).
  • Пример: Дневник4(x + 6x) = 2
  • Според дефиницията на логаритъма (Y = logБ (х)): y = 2- b = 4- x = x + 6x
  • Пренапишете това логаритмично уравнение под формата на индикативен (B = x):
  • 4 = x + 6x
  • Изображение, озаглавено решаване на логаритми стъпка 14
    пет. Намерете "x". За да направите това, решаване на индикаторното уравнение.
  • Пример: 4 = x + 6x
  • 4 * 4 = x + 6x
  • 16 = x + 6x
  • 16 - 16 = X + 6X - 16
  • 0 = X + 6X - 16
  • 0 = (x - 2) * (x + 8)
  • x = 2- x = -8
  • Изображение, озаглавено решаване на логаритми Стъпка 15
    6. Запишете крайния отговор (проверете го преди него).
  • Пример: x = 2
  • Моля, обърнете внимание, че стойността на "X" не може да бъде отрицателна, така че решението x = - 8 Можете да пренебрегнете.
  • Метод 4 от 4:
    Изчисляване на "X" чрез формулата за логаритъма на частния
    1. Изображение, озаглавено решаване на логаритми Стъпка 16
    един. Формула за Logarithm Private: Логаритъмът на частните два аргументи е равен на разликата в логаритмите на тези аргументи:
    • ДневникБ(m / n) = logБ(M) - logБ(Н)
    • където:
    • M> 0
    • N> 0
  • Изображение, озаглавено решаване на логаритми стъпка 17
    2. Отделете логаритъма, преместени в едната страна на уравнението.
  • Пример: Дневник3(x + 6) = 2 + log3(x - 2)
  • Дневник3(X + 6) - log3(x - 2) = 2 + log3(X - 2) - log3(x - 2)
  • Дневник3(X + 6) - log3(x - 2) = 2
  • Изображение, озаглавено решаване на логаритми Стъпка 18
    3. Прилагат формулата за логаритъма на частното, ако уравнението е разликата в два логаритми.
  • Пример: Дневник3(X + 6) - log3(x - 2) = 2
  • Дневник3[(x + 6) / (x - 2)] = 2
  • Изображение, озаглавено решаване на логаритми стъпка 19
    4. Пренапишете уравнението в индикативна форма (за тази употреба на метода, посочен в първия раздел).
  • Пример: Дневник3[(x + 6) / (x - 2)] = 2
  • Според дефиницията на логаритъма (Y = logБ (х)): y = 2- b = 3- x = (x + 6) / (x - 2)
  • Пренапишете това логаритмично уравнение под формата на индикативен (B = x):
  • 3 = (x + 6) / (x - 2)
  • Изображение, озаглавено Решаване на логаритми Стъпка 20
    пет. Намерете "x". За да направите това, решаване на индикаторното уравнение.
  • Пример: 3 = (x + 6) / (x - 2)
  • 3 * 3 = (x + 6) / (x - 2)
  • 9 = (x + 6) / (x - 2)
  • 9 * (x - 2) = [(x + 6) / (x - 2)] * (x - 2)
  • 9x - 18 = X + 6
  • 9x - x = 6 + 18
  • 8x = 24
  • 8x / 8 = 24/8
  • x = 3
  • Изображение, озаглавено решаване на логаритми стъпка 21
    6. Запишете крайния отговор (проверете го преди него).
  • Пример: x = 3
  • Подобни публикации