Как да приложите точки към координатовата равнина
За да приложите точки към координатната равнина, трябва да разберете организацията на координатовата равнина и да знаете какво да правите с координатите (x, y).
Стъпка
Метод 1 от 3:
Координатна равнинаедин. Ос на координатната равнина. Когато приложите точка на равнината на координата, вие се ръководят от неговите координати (X, Y). Това е, което трябва да знаете:
- О оста върви надясно и наляво (оста на абсциса).
- Ос y отива нагоре и надолу (окси ордината).
- Положителните номера се депозират нагоре или надясно (в зависимост от оста). Отрицателни номера - наляво или надолу.
2. Координатна равнина на квадрант. Координатът има 4 области (ограничени от осите и точката на тяхното пресичане), наречени квадранти. Ще трябва да знаете в кой квадрант да приложите точката.
Метод 2 от 3:
Приложете една точкаедин. Започнете от точката (0,0). Това е точката на пресичане на осите X и Y, лежи в центъра на координатът.
2. Движете се по оста х вдясно или наляво. Например, Dana Point (5, -4). Координатна x = 5. Пет - номерът е положителен и трябва да се движите по оста x с 5 единици вдясно. Ако е било отрицателно, ще се движите на 5 единици.
3. Движете се по оста на нагоре или надолу. Започнете там, където сте спрели: 5 единици вдясно по оста х. От координатата Y = -4 трябва да се движите по оста на 4 единици. Ако y = 4, ще се движите нагоре 4 единици.
4. Приложите точката. Приложете точка, която се движи от центъра на координатите с 5 единици вдясно и 4 единици надолу. Точка (5, -4) се намира в квадрант 4.
Метод 3 от 3:
Прилагаме няколко точкиедин. Приложете точки за изграждане на графика. Ако ви бъде дадена функция, можете да намерите неговите точки произволно да избирате стойностите на x и по този начин изчислявате стойностите на. Продължете с това, докато намирате достатъчно точки за изграждане на функционален график. Ето как можете да го направите, ако ви бъде дадена линейна функция (графична линия) или по-сложна квадратична функция (график на Parabola).
- Например, линейна функция y = x + 4. Изберете случайната стойност X, например 3 и изчислете стойността на Y: Y = 3 + 4 = 7. Намери точка (3, 4).
- Например, е дадена квадратична функция y = x + 2. Направете същото: Изберете случайната стойност x и изчислете. Да предположим x = 0. След това y = 0 + 2 = 2. Намерихте точка (0.2).
2. Ако е необходимо, свържете точки. Ако трябва да изградите графика, свържете пряката линия на пътя в случай на линейна функция и крива на линията в случай на квадратична функция.
3. Промените в функцията засягат графика.
4. Помислете как промените в функцията влияят на графика на примера. Вземете функцията y = x ^ 2- нейната графика - parabola с връх в точка (0,0). Променяме функцията, както следва:
Съвети
- Добър начин да си спомните това, което първо се движи по оста x, а след това - по оста y, представете си, че изграждате къща: първо поставяте основата (ос x) и след това сложете стените (ос y).